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Abstract

The time history of steam pressure inside an isolated ‘‘crack-like’’ micro-cavity in a polymer matrix composite is
studied by assuming that the chemical potential of water is continuous across the cavity/polymer interface. Steam pres-
sure inside the cavity is due to rapid heating of moisture-saturated composites from its initial temperature to a final
temperature Tf. Exact closed form solutions are obtained for a ‘‘crack-like’’ cavity inside an infinite and a finite plate.
For the case of an infinite plate, the exact solution shows that the steam pressure approaches the saturated steam pres-
sure psat(Tf) at a characteristic time tc ffi 25h2

Df
ðMwpsatðT f Þ

RT f w0
Þ2, where h is the cavity height, Df is the diffusivity of water at Tf,

Mw is the molecular weight of water, w0 is the initial moisture concentration of the composite and R is the universal gas
constant. When moisture is allowed to escape from the composite, such as in the case of a finite plate, the maximum
steam pressure depends on a single dimensionless parameter a ¼ LRT f w0

hMwpsatðT f Þ
, where L is the thickness of the composite

plate. For large a, the maximum steam pressure approaches psat(Tf). However, the maximum steam pressure can be
significantly less than psat(Tf) when a 6 4. The present model can also be used to study the �popcorning� observed in
electronic packages.
� 2004 Elsevier Ltd. All rights reserved.
1. Introduction

Due to their high specific stiffness and strength properties at temperatures in excess of 300 �C, graphite
fiber/polyimide matrix composites represent an important class of materials for secondary support struc-
tures in reusable launch vehicles. When not in service, these composites can absorb moisture in excess of
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Nomenclature

w moisture concentration
w0, w1 initial and equilibrium moisture concentration respectively
T0, Tf initial and final temperature respectively
D(T), Df moisture diffusivity at temperatures T and Tf respectively
v relative humidity
lp, lair chemical potential of water in polymer and air respectively
_T heating rate
n0, n initial and final number of moles of water per unit projected area in the cavity
p partial pressure of water vapor in the cavity
psat(T) saturated vapor pressure of pure water at temperature T
L, h plate thickness and cavity depth respectively
k Henry�s constant
/ normalized concentration
�x, X normalized position
�t, s normalized times
Ld thickness of depletion layer
Mw molecular weight of water, 18 g/mol
R gas constant, 8.314 J/(molK)
d dimensionless parameter, d ¼ RT 0w0

MwpsatðT 0Þ
c dimensionless parameter in the finite plate problem, c = 1�w1/w0

a dimensionless parameter in the finite plate problem, a ¼ LRT fw0

hMwpsatðT f Þ
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3% by weight from the environment. During service, they can be subjected to heating rates as high as 100
�C/s. At such heating rates, failure or extensive internal damage of the composite can occur due to steam
induced delamination and blistering. This phenomenon has led to many studies on blister initiation and
growth in high temperature resins and composites (see Bowman et al., 2001; Price et al., 1995; Rice,
1996; Rice and Lee, 1997; Shirrel, 1978). For example, Rice and Lee (1997) have conducted weight loss
experiments by subjecting polyimide plates to various heating rates. From these experiments, they deter-
mine the dependence of the moisture diffusivity of water on temperature. They also studied the onset of
blisters by measuring the change of thickness of the composite plate during heating. By observing that
the volume of their samples actually increases when heated at a constant external pressure of 10 MPa, they
concluded that the pressure inside the steam filled cavities must exceed 10 MPa. A detailed study of the
internal steam pressure caused by the effusion of water in carbon phenolic composites was carried out
by Sullivan and Stokes (1997) using a theory of gas flow in a rigid porous media.

The issue of moisture absorption and subsequent delamination is also important to the electronic pack-
aging community. When polymer-encapsulated microcircuits are exposed to high temperatures during
infra-red reflow soldering, a sound characteristic of popcorn popping is detected. This so-called �popcorn-
ing� effect is due to the moisture induced delamination at the package interfaces. For more details, the read-
ers are referred to the articles by McCluskey et al. (1997), Gannamani and Pecht (1996) and the references
therein.

Blister formation and interlaminar crack growth are controlled by moisture transport from the polymer
to microcavities in the composite. A simple problem is to consider the time history of steam pressure inside
an isolated cavity in a moisture-saturated composite. During heating, water molecules are transported from
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the polymer into the cavity, resulting in an increase of steam pressure. On the other hand, since moisture
can also escape from the surfaces of the composite; the pressure inside the cavity can be reduced if the com-
posite is sufficiently thin. The following questions naturally arise: How fast does the pressure build up inside
a cavity? In addition, how does steam pressure depend on the cavity size, the moisture diffusivity, the heat-
ing rate and the moisture content in the composite before heating? A micromechanical model addressing
these questions will allow us to quantify the time dependent driving force causing damage and can be used
to study the interactions between cavities and other forms of damages, such as interfacial cracks. Such a
model can eventually lead to a micromechanical based continuum model for damage evolution in a
composite.

There is a vast literature on the diffusion of moisture in polymers and polymer composites. The focus of
these studies is to predict the moisture concentration as a function of position and time in a homogenized
composite and in neat resins. Much less attention is given to micromechanical modeling of blister forma-
tion. For polymers and polymer composites, readers are referred to a collection of articles edited by
Springer (1981). In general, the diffusivity of moisture is stress, concentration and temperature dependent
(for example, see Weitsman, 1987). Despite the many theoretical and experimental developments, there is
still no consensus on the relative importance of these effects. In addition, experiments seem to suggest that
moisture transport is very sensitive to the amount of internal damage (Shirrel, 1978). Such damage can oc-
cur during fabrication or when the composite is exposed to moist air with high relative humidity and high
ambient temperatures (Loos and Springer, 1981; Shirrel, 1978; Whitney and Browning, 1978). Damage oc-
curs even at zero heating rates with no applied mechanical load. Current theories on moisture transport do
not take into account the development of internal damage. Despite these complications, weight gain exper-
iments on composite plates exposed to moist air with a fixed relative humidity have shown that moisture
diffusion data can be fitted using a concentration dependent form of Fick�s law (Shirrel, 1978; Whitney
and Browning, 1978). In particular, when composite damage is low, the diffusivity is found to be concen-
tration independent (Whitney and Browning, 1978). A further simplification is to note that the thermal dif-
fusivity of typical composites is much larger than the moisture diffusivity, so that thermal equilibrium is
attained much faster than moisture equilibrium. Thus, the thermal conduction problem and the moisture
diffusion problem can be decoupled.

Although Fick�s law has been used quite successfully to interpret weight gain experiments, there are some
shortcomings. Fick�s law states that the moisture flux is proportional to the concentration gradient, whereas
in reality, it is the gradient of the chemical potential of moisture that drives diffusion. A formulation of
transport driven entirely by concentration gradient has limitations; even in one-dimensional weight gain
calculations. For example, consider a long plate of thickness L with an initial moisture concentration of
w0. The moisture concentration is defined as the mass of water per unit volume of composite. The top
and bottom surfaces of the plate are located at x = 0 and x = L respectively. The plate is exposed to moist
air at a constant temperature T with a fixed relative humidity v. The moisture concentration inside the
plate, w, satisfies the diffusion equation
ow
ot

¼ D
o

2w
ox2

ð1Þ
where x is the coordinate normal to the plate and D is the diffusivity of water. The difficulty lies in deter-
mining the boundary conditions on x = 0 and x = L. The boundary condition often used in the literature
(Shirrel, 1978; Whitney and Browning, 1978) is:
wðx ¼ 0; t > 0Þ ¼ wðx ¼ L; t > 0Þ ¼ w1 ð2Þ

where w1 is the equilibrium concentration. From the experimental point of view, this boundary condition
presents no difficulty, since w1 can be determined from the weight gained at long times. However,
this boundary condition is inadequate from a modeling standpoint as it should be related to the relative
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humidity since exposing the polymer plate to moist air drives moisture transport. Indeed, experiments have
shown that w1 is related to the relative humidity v by (Shirrel, 1978; Whitney and Browning, 1978):
w1 ¼ AðT Þv ð3aÞ

but some authors (Deiasi and Whiteside, 1978; Woo and Piggott, 1987) have observed a relationship of the
form
w1 ¼ AðT Þvb ð3bÞ

where the exponent b is different from one. It is not clear whether the difference in exponent b is because of
an experimental error as pointed by Loos and Springer (1981) or is actually present in some material sys-
tems. In addition, the dependence of A(T) on temperature is found to be very weak (Loos and Springer,
1981). This paradox can be resolved by using the approach of Sullivan and Stokes (1997) by assuming that
the water molecules on the surface of the polymer composite are in local chemical equilibrium with the sur-
rounding moist air, i.e.
lpðx ¼ 0; tÞ ¼ lair ð4Þ
where lp, lair denote the chemical potential of the water in the polymer and water in the surrounding air
respectively. The chemical potential of the water in the polymer composite is a function of the time and
position, whereas the chemical potential of water in the air is spatially uniform and depends only on the
relatively humidity v and the temperature, i.e.,
lair ¼ l0ðT Þ þ RT ln v ð5Þ

where l0(T) is the chemical potential of pure water at temperature T. As in Sullivan (1996), the water and
the polymer composite are treated as a binary mixture. The chemical potential of the water in the polymer
composite can be expressed in terms of the activity of the water, a:
lp ¼ l0ðT Þ þ RT ln aðx ¼ 0; t > 0Þ ð6Þ
At sufficiently small concentrations, Henry�s law is valid, that is:
aðx ¼ 0; t > 0Þ ¼ kðT Þwðx ¼ 0; t > 0Þ ð7Þ
Therefore, local equilibrium implies that
wðx ¼ 0; t > 0Þ ¼ v=kðT Þ

This equation is the same as (3a) provided that A(T) is identified with 1/k(T). This shows that the boundary
condition (2) used in the literature is consistent with the chemical potential approach.
2. Problem statement

The geometry is shown schematically in Fig. 1. For simplicity, we consider a ‘‘crack-like’’ rectangular
cavity in the mid-plane of a plate of thickness 2L + 2h. Specifically, the lateral dimension of the cavity is
assumed to be much greater than its thickness 2h so that moisture transport through the lateral walls of
the cavity can be neglected. This assumption and symmetry allows us to study the one dimensional diffusion
problem illustrated in Fig. 2.

Initially, the composite is in thermal equilibrium at temperature T0. Let w0 denote the initial moisture
concentration in the composite. Without loss in generality, we assume that the composite is initially fully
saturated, that is, the relative humidity inside the cavity is 100%. The composite is subjected to the follow-
ing thermal history:



Fig. 1. A crack-like cavity in the mid-plane of a plate of thickness 2L.

Fig. 2. Top half of the cavity and plate due to symmetry considerations.
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T ðtÞ ¼ T 0 þ _T t 0 6 t 6 tf
T f t P tf

(
ð8Þ
where
_T ¼ T f � T 0

tf
ð8aÞ
is the heating rate and tf is the time taken to reach the temperature Tf. For simplicity, we assume that the
composite is rigid so that the cavity is un-deformable. This assumption will overestimate the rate of pres-
sure increase in the cavity. The validity of this assumption will be addressed in the discussion. To complete
the problem formulation, the polymer and the water is treated as a binary solution. Since diffusion is driven
by the gradient of chemical potential l of the water instead of concentration gradient, the moisture flux,
denoted by ~J , is given by (Shewmon, 1989):
~J ¼ �Mwrl ð9Þ

where M is the mobility of water molecules. Conservation of mass implies that
r 	~J ¼ �ow=ot ð10Þ

The governing equation for moisture diffusion is obtained by combining (9) and (10), i.e.,
r 	 ðMwrlÞ ¼ ow=ot ð11Þ
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3. Boundary conditions

To gain physical insight, consider the special case where the thickness of the composite plate is very large
in comparison with the cavity height. In this case the moisture concentration far away from the cavity is
given by
wðx ! 1; tÞ ¼ w0 ð12Þ

The difficult boundary condition is associated with the cavity surface at x = 0. Local equilibrium implies
that the chemical potential of water is continuous across the interface x = 0. Let lp and lc denote the chem-
ical potential of water in the polymer and cavity respectively. The assumption of local equilibrium implies
that:
lpðx ¼ 0þÞ ¼ lc ð13Þ
The chemical potential of water in the cavity is given by (5),
lc ¼ l0ðT Þ þ RT ln
p

psatðT Þ
ð14Þ
where p is the partial pressure of water vapor in the cavity and psat(T) is the saturated vapor pressure of
pure water at temperature T. Assuming Henry�s law, local equilibrium and (5)–(7) implies that
kðT Þwðx ¼ 0; tÞ ¼ p
psatðT Þ

ð15Þ
The steam pressure inside the cavity is related to the cavity height h by the ideal gas law,
p ¼ nRT
h

ð16Þ
where n is the number of moles of water per unit projected area of the cavity. It is related to the moisture
flux through the polymer surface, J, by
n ¼ n0 �
1

Mw

Z t

0

Jðx ¼ 0; t0Þdt0 ð17Þ
where Mw is the molecular weight of water and n0 is the initial number of moles of water per unit projected
area inside the cavity and is given by
n0 ¼
psatðT 0Þh

RT 0

ð18Þ
The second term in (17) is the total number of moles of water inside the cavity due to diffusive transport
across the interface x = 0. Since initially the composite is fully saturated, k(T0)w(x = 0,t = 0) = 1 or
k(T0) = 1/w0. Combining (15)–(18), the boundary condition on the interface x = 0 is:
kðT Þwðx ¼ 0; tÞ ¼ T
psatðT Þ

psatðT 0Þ
T 0

þ R
Mwh

Z t

0

DðT ðt0ÞÞw;xðx ¼ 0; t0Þdt0
� �

ð19Þ
Henry�s law and (9) implies that
J ¼ �MRT ow=ox � �Dow=ox ð20Þ

where D = MRT is the diffusivity. Thus, the Henry�s law assumption leads to the linear diffusion equation,
DðT Þo2w=ox2 ¼ ow=ot ð21Þ
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It is to be noted that D is a function of temperature. Since temperature is a function of time, D is also time
dependent. The next step is to specify the behavior of k(T), psat(T) and D(T).

Weight gain experiments have shown that k(T) is quite insensitive to temperature (Deiasi and Whiteside,
1978; Loos and Springer, 1981; Shirrel, 1978). Consistent with these observations, we assume
kðT Þ ¼ kðT 0Þ ¼ 1=w0: ð22Þ
The saturated vapor pressure of water can be obtained from steam tables. psat(T) is well approximated by
the equation:
psatðT Þ ¼ P 0 exp
�eT
T

 !
ð23Þ
where P0 = 36839.35 MPa, eT ¼ 4802:4 K. Eq. (23) can be rewritten as
p
satðT 
Þ ¼ exp eT 

1 � 1

T 


� �� �
ð24Þ
where p
satðT 
Þ ¼ psatðT Þ=psatðT 0Þ and eT 
 � eT =T 0. Fig. 3 plots p
satðT Þ versus T* �T/T0. Experiments have
also shown that the dependence of diffusivity on temperature obey an Arrhenius equation of the form (Rice
and Lee, 1997; Whitney and Browning, 1978; Woo and Piggott, 1987) which can be written as
DðT Þ
DðT 0Þ

¼ exp eT 


1 � 1

T 


� �� �
ð25Þ
where T** is a material constant. For example, for the material AFR700B, which is a high-temperature
fluorinated polyimide, Rice and Lee (1997) reported a T** � 13.7.
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Fig. 3. Plot of p
satðT Þ and x(T*) versus normalized temperature T*. Arrows point to the appropriate axis labels.
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4. Method of solution

Introducing the dimensionless variables
/ ¼ w=w0 ð26aÞ

�x ¼ x=h ð26bÞ

and normalized time,
�t ¼ 1

h2

Z t

0

DðT ðt0ÞÞdt0; ð26cÞ
(21) can be reduced to the standard form
o/=o�t ¼ o
2/=o�x2 �x > 0 ð27Þ
The boundary conditions become:
/ð�x ¼ 0;�t > 0Þ ¼ xðT 
Þ 1 þ d
Z �t

0

/;�xj�x¼0 d�t0
� 	

ð28Þ
and
/ð�x ! 1;�t > 0Þ ¼ 1 ð29Þ

where
d ¼ RT 0w0

MwpsatðT 0Þ
ð30Þ

xðT 
Þ ¼ T 


p
satðT 
Þ ð31Þ
Using T0=300 K, wo=42 kg/m3, and (23), we get d � 1400. The function x(T*) is in general time dependent.
The initial condition is
/ð�x;�t ¼ 0Þ ¼ 1 ð32Þ
5. Infinitely thick plate with infinitely fast heating

To simplify the problem further, we consider the limiting case of very high heating rates, i.e. _T ! 1.
This is an important case since it provides an upper limit on how fast the pressure can build up. Since
the heating rate is infinite, we have
T ¼
T 0 t ¼ 0

T f t ¼ 0þ



ð33Þ
Note that in this case �t ¼ Df t=h
2. In addition, the governing Eq. (27) and the boundary and initial condi-

tions (28), (29), (32) remain unchanged provided that the time dependent dimensionless function (31) in (28)
is replaced by the constant
xf ¼
T 


f

 
 ð34Þ
psatðT f Þ
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which is typically much smaller than one. For example, xf = 6.7 · 10�4 for T0 = 300 K and Tf = 600 K. All
the examples in this paper (e.g. Figs. 3–8) are based on T0 = 300 K and Tf=600 K. A plot of x(T*) versus
normalized absolute temperature is shown in Fig. 3.

For the case of infinitely fast heating, we normalize the equations using a new set of dimensionless var-
iables X and s i.e.,
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Fig. 4. (a) Plot of normalized pressure with the square root of normalized time. (b) Plot of pressure in cavity versus real time.
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X ¼ dxf

h
x; s ¼ d2x2

fDf

h2
t ð35Þ
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Also, it is convenient to introduce the function g = 1�/. Eq. (27) remains unchanged with this transforma-
tion, i.e.
og=os ¼ o
2g=oX 2 ð36Þ



1066 C.-Y. Hui et al. / International Journal of Solids and Structures 42 (2005) 1055–1072
whereas the boundary conditions become:
1 � gðX ¼ 0; s > 0Þ ¼ xf �
Z s

0

og
oX

ðX ¼ 0; s0Þds0 ð37aÞ
and
gðX ! 1; s > 0Þ ¼ 0 ð37bÞ

The new initial condition is
gðX ; s ¼ 0Þ ¼ 0 ð37cÞ

Taking the Laplace transform of (36), we obtain
~gðX ; sÞ ¼ AðsÞe�
ffiffi
s

p
X ð38Þ
where
~gðX ; sÞ ¼
Z 1

0

e�ssgðX ; sÞds ð39Þ
denotes the Laplace transform of g. The function A(s) is determined by the Laplace transform of (37a).
A simple calculation shows that
AðsÞ ¼ 1 � xfffiffi
s

p ð ffiffi
s

p þ 1Þ : ð40Þ
The function 1 � g(X = 0,t) = /(X = 0,t) is important, since it is the time history of the normalized pressure
inside the cavity. Indeed, from (15),
1 � gðX ¼ 0; sÞ ¼ pðX ¼ 0; sÞ=psatðT fÞ ð41Þ

Since AðsÞ ¼ ~gðX ¼ 0; sÞ, the steam pressure inside the cavity is given by:
pðX ¼ 0; sÞ ¼ psatðT fÞ½1 � ‘�1ðAðsÞÞ� ð42Þ

where ‘�1 denote the inverse Laplace transform operator. Since
‘�1ðAðsÞÞ ¼ ð1 � xfÞes erfc
ffiffiffi
s

p
;

the time history of the steam pressure in the cavity is
pðX ¼ 0; sÞ ¼ psatðT fÞ½1 � ð1 � xfÞes erfc
ffiffiffi
s

p
� ð43Þ
The short and long time behavior of the steam pressure can be obtained using the asymptotic behavior of
the complementary error function, it is found to be:
pðX ¼ 0; tÞ ¼ psatðT 0ÞðT f=T 0Þ 1 þ 2ð1 � xfÞ
d
h

ffiffiffiffiffiffiffi
Df t

p� 	
;

dxf

ffiffiffiffiffiffiffiffiffiffi
pDf t

p

h
� 1 ð44Þ

pðX ¼ 0; tÞ ¼ psatðT fÞ 1 � ð1 � xfÞ
h

dxf

ffiffiffiffiffiffiffiffiffiffi
pDf t

p
� 	

;
dxf

ffiffiffiffiffiffiffiffiffiffi
pDf t

p

h
� 1 ð45Þ
where these asymptotic results are expressed in physical time. Eq. (44) shows that the pressure jumps from
psat(T0) from t = 0 to psat(T0)(Tf/T0) at t = 0 + . This sudden jump is due to the infinite heating rate, which
cause the temperature to jump from T0 to Tf. Since steam is modeled as an ideal gas and the cavity is rigid,
the pressure increases instantaneously by the factor Tf/T0 (Boyle�s Law). However, this increase in pressure
is insignificant in comparison with the saturated steam pressure at Tf. For example, if a moisture-saturated
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composite, initially at room temperature T0 = 300 K is rapidly heated to its glass transition temperature,
which is about 625 K for high temperature polyimide, (44) implies that the sudden jump in vapor pressure
inside a cavity is about a factor two above the saturated vapor pressure at room temperature, psat(T0). This
increase is insignificant in comparison with the final saturated steam pressure at Tf = 625 K, which is about
4000 times psat(T0).

Fig. 4a plots the normalized steam pressure p(X = 0,s)/psat(Tf) versus the square root of the normalized
time s. The short time solution (44) and the long time solution (45) are also plotted on the same figure. The
maximum pressure psat(Tf) is reached at a normalized time corresponding to

ffiffiffi
s

p
� 10. Fig. 4a shows that

the characteristic normalized time sc for the transition from short time to long time behavior is
ffiffiffiffi
sc

p ’ 5; in
real times, this is
tc ffi
25h2

Df

MwpsatðT fÞ
RT fw0

� �2

ð46Þ
For h=10 lm and Df = 6.82 · 10�9 m2/s (using (25) and Rice and Lee, 1997), the transition time tc is about
0.4 s. Fig. 4b plots the actual pressure versus real time.
6. Depletion layer

Although the composite is infinitely thick in comparison with the depth of the cavity, the moisture inside
the cavity is supplied from a thin layer of polymer adjacent to it. The thickness of this layer evolves with
time. For short times, this layer increases with time as water is depleted. As the moisture is replenished by
diffusion, the thickness of this layer goes down and finally vanishes when the cavity is fully pressurized.
Mathematically, if we consider a fixed point X > 0 in the composite, the normalized moisture concentration
/(X,s) at that location would decrease from its initial value of one as moisture is transported to the cavity.
The moisture concentration will eventually increase and will reach its initial value of one when the cavity is
fully pressurized. Thus, for any fixed X > 0, /(X,s) has a minimum /min(X) at some time smin(X). The thick-
ness of the depletion layer, Ld, is defined by the condition
/minðX dÞ ¼ 0:9 ð47Þ

where Xd = Ld/h. To evaluate Ld, we need to determine the moisture concentration as a function of position
and time. The concentration can be obtained by inverting the inverse Laplace transform of ~gðX ; sÞ. Using
(38) and (40), it is
/ðX ; sÞ ¼ 1 � ð1 � xfÞeX es erfc
ffiffiffi
s

p
þ X

2
ffiffiffi
s

p
� �

ð48Þ
It can be seen that (43) is recovered as X! 0. The moisture concentration at different normalized distances
from the cavity surface is plotted against the square root of the normalized time s in Fig. 5. Fig. 5 shows
that
/minðX d ¼ 4Þ ’ 0:9 ) Ld

h
’ 4 ð49Þ
Therefore, the depletion layer is about four times the cavity depth.
Since the plate is infinitely thick, steam can only enter the cavity and cannot escape. Thus, the maximum

pressure is always psat(Tf). The situation is different if the plate has a finite thickness. Indeed, for a suffi-
ciently thin plate, the maximum steam pressure can be much less than psat(Tf). Since the thickness of the
depletion layer is about 4h, for plates of thickness much larger than 4h, the steam pressure can be significant
and can reach the saturated pressure.
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7. Finite plate thickness, infinitely fast heating

To demonstrate the validity of this argument and to study the dependence of the maximum steam pres-
sure in the cavity as a function of plate thickness, we solve the finite plate problem. The governing equa-
tions are still given by (36, 37a, 37c). However, the boundary condition (37b) is replaced by
gðX ¼ a; s > 0Þ ¼ 1 � w1=w0 ¼ 1 � /1 � c ð50Þ

where a = dxfL/h. This new boundary condition states that the external surface of the plate is in contact
with dry air; where w1 is the long time moisture concentration of the plate and is assumed to be much smal-
ler than w0 so that c ’ 1. Taking the Laplace transform of (36) and using (37c), we obtain
~gðX ; sÞ ¼ AðsÞe
ffiffi
s

p
X þ BðsÞe�X

ffiffi
s

p
ð51Þ
The functions A(s), B(s) are determined by the Laplace transform of (37a) and (50). They are found to be
A ¼
1�xf

s

� 

e�a

ffiffi
s

p
� 1 þ 1ffiffi

s
p

� �
c
s

1 � 1ffiffi
s

p
� �

e�a
ffiffi
s

p
� ea

ffiffi
s

p
1 þ 1ffiffi

s
p

� � ð52Þ

B ¼
1 � 1ffiffi

s
p

� �
c
s �

1�xf

s

� 

ea
ffiffi
s

p

1 � 1ffiffi
s

p
� �

e�a
ffiffi
s

p
� ea

ffiffi
s

p
1 þ 1ffiffi

s
p

� � ð53Þ
The normalized cavity pressure p/psat(Tf) is 1 � g(X = 0,s). Using (51)–(53), the Laplace transform of
g(X = 0,s) is found to be:
~gðX ¼ 0; sÞ ¼ Aþ B ¼
1�xfffiffi

s
p

� �
sinhða ffiffi

s
p Þ þ c

s

EðsÞ ð54Þ
where
EðsÞ ¼
ffiffi
s

p
sinhða

ffiffi
s

p
Þ þ coshða

ffiffi
s

p
Þ ð55Þ
7.1. Long time and short time behavior

The steady state value of g(X = 0,s) is determined by the behavior of its transform as s! 0, which is
~gðX ¼ 0; s ! 0Þ ¼ c
s

ð56Þ
Eq. (56) implies that
/ðX ¼ 0; s ! 1Þ ¼ 1 � c � 1 ð57Þ
Thus, for the case of c = 1 (the plate is exposed to dry air of zero relative humidity), the cavity pressure goes
to zero at long time. The short time behavior of the normalized pressure is determined by the behavior of
~gðX ¼ 0; sÞ for large s. A simple calculation shows that
~gðX ; s ! 1Þ ¼
1�xfffiffi

s
p

� �
ffiffi
s

p þ 1
ð58Þ
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Comparison of (40) and (58) shows that the short time pressure in the finite plate problem is exactly given
by the cavity pressure of an infinitely thick plate. This is to be expected, since the moisture transported to
the cavity at short times is from material that is close to the cavity surface.

7.2. Exact solution

The exact solution of g(X = 0,s) can be obtained using the inversion formula
gðX ¼ 0; sÞ ¼ 1

2pi

Z cþi1

c�i1
egðX ¼ 0; sÞess ds ð59Þ
where the integral in (59) is evaluated along any line Re s = c to the right of all singularities of ~gðX ¼ 0; sÞ.
The complex path integral (59) can be evaluated using residue theorem, the solution is:
gðX ¼ 0; sÞ ¼ cþ
X
k

Re s½ess~gðX ¼ 0; sÞ�jsk ð60Þ
where Re s½ess~gðX ¼ 0; sÞ�jsk denotes the residue of ess~gðX ¼ 0; sÞ at sk and sk are the singular points of
~gðX ¼ 0; sÞ. The singularities of ~gðX ; sÞ are located at s = 0 which is a simple pole, and at the zeroes of
E(s). The zeroes of E(s) are the roots of
ffiffi

s
p

tanhða
ffiffi
s

p
Þ ¼ �1 ð61Þ
Let z ¼ a
ffiffi
s

p
, using the identity tanhz = �i tan(iz), (61) can be rewritten as
iz tanðizÞ ¼ a ð62Þ

where
a � Ldxf=h ¼ LRT fw0

hMwpsatðT fÞ
ð63Þ
The factor dxf=0.94 and hence a � L/h. Let u = iz, then (63) becomes
u tan u ¼ a ð64Þ

It can be readily shown that for real a, (64) has infinitely many simple real zeroes. In addition, if uk is a zero,
so is �uk. Denote these zeroes by ±uk, where k is a non-negative integer. Since the zeroes of (61) are related
to the zeroes of (64) by sk ¼ �u2

k=a
2, the singularities of ~gðX ; sÞ are all simple poles. The residues of

ess~gðX ¼ 0; sÞ are found to be:
Re s½ess~gðX ¼ 0; sÞ�jsk ¼ 2e�u2
ks=a

2
ð1 � xfÞ sinðukÞ

uk
� ca

u2
k

ð1 þ aÞ sinðukÞ
uk

þ cosðukÞ
ð65Þ
For sufficiently large u, the roots of (64) occur close to kp, where k is an integer. Using (60) and (65), the
normalized concentration is given by
/ðX ¼ 0; sÞ ¼ 1 � c�
X
k

2e�u2
ks=a

2
ð1 � xfÞ sinðukÞ

uk
� ca

u2
k

ð1 þ aÞ sinðukÞ
uk

þ cosðukÞ
ð66Þ
Eq. (66) implies that the maximum normalized pressure for a given c depends only on the dimensionless
parameters a and xf. Since 1 � xf ’ 1, the dependence on xf is extremely weak. Therefore, for a fixed c,
the maximum normalized pressure depends only on a. In particular, for c = 1, the normalized pressure van-
ishes at long times. Fig. 6 plots the normalized moisture concentration on the cavity surface versus the nor-
malized time for c = 1 and different values of parameter a. The infinite plate solution (43) is also plotted in
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Fig. 6 as a comparison. Since /(X = 0,s) is also the normalized steam pressure, the plots in Fig. 6 are also
the time histories of steam pressure. For each a, the normalized pressure p/psat(Tf) builds up from its initial
value of xf to its maximum /max at s = smax. The dependence of the maximum normalized pressure /max on
a is shown in Fig. 7. Fig. 7 shows that the maximum pressure increases rapidly for small values of a (thin
plates); it then levels out for a P 25. Since RT f w0

MwpsatðT f Þ
’ 1, the results in Fig. 7 predict that the steam pressure

inside the cavity will be close to the saturated vapor pressure if the plate to cavity thickness ratio exceeds 25.
This is about six times thicker than the depletion layer in the infinite plate problem. It should be noted that
the plate corresponding to a = 25 is quite thin, it is about 25 times the cavity depth.

Let the normalized time where the normalized pressure first reaches 0.9 by s* (see Fig. 6). Beyond this
time, the pressure reaches a maximum then decreases to 0.9 at s = s**. The difference between these two
times, Ds � s** � s* determines how long the pressure in the cavity exceeds 0.9Psat(Tf). Fig. 6 shows that
s* in extremely insensitive to a, as long as a > 10. A detailed analysis showed that s* decreases very slightly
with increasing a. In addition, for a > 25, the infinite plate solution is a good approximation to the finite
plate solution for normalized pressure below 0.9. On the other hand, s** and hence Ds increases rapidly with
a. This dependence is shown in Fig. 8.
8. Summary and discussion

The steam pressure inside a microcavity when a moisture saturated polymer composite is rapidly heated
is determined using by assuming the chemical potential of water is continuous across the cavity/polymer
interface. In this work we consider a single isolated ‘‘crack-like’’ cavity in a composite plate. However,
the formulation in this work can be used to compute the moisture content in a composite containing a large
number of cavities of different size and shape. The key result in this paper is that maximum steam pressure
pmax is a function of a single dimensionless constant a,
pmax ¼ psatðT fÞ/maxðaÞ ð67Þ

where a ¼ LRT f w0

hMwpsatðT f Þ
. It is interesting to note that, with the exception of w0, a is completely determined by the

geometry of the composite and the thermodynamic properties of pure water, and is otherwise independent
of the properties of the composite (e.g. diffusivity). However, the time needed to reach maximum steam
pressure depends on both the diffusivity and a.

Although all the examples in this work are based on the temperature range from 300 and 600 K, which
corresponds to xf = 6.7 · 10�4, the analysis is valid for all temperature ranges.

Our results allow us to establish a condition for blister-induced delamination. Consider a circular
cylindrical cavity of radius a. The height of the cavity h is assumed to be much smaller than its radius,
i.e., h/a� 1 so that it can be treated as a penny-shape crack. Assuming that a is much smaller than the
typical plate dimension, then the maximum strain energy release rate G due to a uniform pressure loading
on the crack faces is:
G ¼ 4ð1 � m2Þ
p

½pmaxðaÞ�
2a

E
ð68Þ
where E and m is the Young�s modulus and Poisson�s ratio of the composite plate which is assumed to be
isotropic. Fracture of the blister will occur if
4ð1 � m2Þ
p

½pmaxðaÞ�
2a

E
¼ Gc ð69Þ
where Gc is the fracture toughness of the composite in Mode I. Thus, to prevent blister induced delamina-
tion, the maximum steam pressure
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pmaxðaÞ <
ffiffiffiffiffiffiffiffiffiffiffiffiffi
EGc=a

p
; ð70Þ
where we have ignored the factor 4(1 � m2)/p. As an example, the maximum steam pressure inside a cavity
in a thick composite that is rapidly heated from room temperature to 600 K is about 12 MPa. The critical
flaw size computed using (70) with E = 2.5 GPa and Gc=40 J/m2 is about 700 lm. This is a large flaw in
comparison with typical defect size in a composite. However, it must be noted that when composites are
subjected to hydrothermal fatigue conditions, small flaws can grow sub-critically; that is, crack growth
occurs at energy release rates much lower than Gc (Gurumurthy et al., 2002). In addition, the rate of crack
growth under these conditions will be sensitive to the duration of high pressure. As shown in Fig. 8, this
duration is sensitive to a. Specifically, even if the steam pressure inside thin plates (e.g. L/h ’ 25) can reach
the maximum steam pressure, the duration of this pressure is very short; thus sub-critical crack growth is
much faster in thick plates. To develop a theory for the safe operation of high temperature composites un-
der these conditions, it is necessary to relate the mechanism of sub-critical crack growth to the local stress
and deformation fields.

There are obvious limitations in this work. For example, the composite is heated infinitely fast. This
assumption provides an upper bound for the maximum steam pressure inside a cavity. The effect of finite
heating rate on the steam pressure will be the subject of an upcoming work.

Our model does not include the effect of stress on the chemical potential, which was considered by
Weitsman (1987). Also, the cavity is not deformable, which leads to a more conservative estimate for
the steam pressure. We do not expect the effect of stress to be very large, however, since the steam pressure
is significantly less than the elastic modulus of the composite. Thus, the change of the dimension of the
cavity will be small. Specifically, since the maximum pressure is a function only of a which is inversely pro-
portional to h, a change of h of a few percent should not significantly affect our results. However, the
assumption that the activity of water in the polymer obeys Henry�s law merits further scrutiny since exper-
iments supporting this result are carried out in a limited temperature range. If Henry�s law is not satisfied,
the governing equations will be nonlinear and are much more difficult to solve.

Another limitation of our model is the use of the ideal gas law to compute the steam pressure (see (16)).
For most gases, including water vapor, the compressibility PV/nRT satisfy a relation of the form
PV =nRT ¼ f ðPR; TRÞ ð71Þ
where f is a universal function independent of gases, PR = P/Pc and TR = T/Tc are the reduced pressure
and temperature respectively; and we have denoted the critical pressure and temperature by Pc and Tc,
respectively (Gaskell, 1981). For PR = P/Pc < 1, f is approximately linear in the reduced pressure, i.e.,
PV =nRT ¼ 1 � bðTRÞPR ð72Þ
Since the melting temperature of polyimide is close to the critical temperature of water, which is 647.3 K,
the condition Tf < Tc is always satisfied. Eq. (72) implies that the ideal gas law underestimates the number
of moles of water needed to create a given pressure. For example, at T = Tf, (72) implies that the actual
number of moles of water needed to sustain the saturated vapor pressure Psat (Tf) is
nsat ¼
½P satðT fÞV =RT f �

½1 � bðT f=T cÞðP satðT fÞ=P cÞ�
ð73Þ
which is greater than the ideal gas prediction, Psat (Tf)V/RTf, by a factor of
½1 � bðT f=T cÞðP satðT fÞ=P cÞ��1
At Tf=623 K, this factor is about 2. As a result, the ideal gas assumption underestimates the time for the
steam pressure to reach its maximum value. Therefore, the result in this work provides a lower bound for
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the time taken for the steam pressure to reach its maximum and an upper bound for the maximum pressure.
The effect of non-ideal gas behavior on cavity pressure will be the subject of a future work.
Acknowledgment

This work has been funded through NASA Cooperative Agreement NCC3-994, the ‘‘Institute for Future
Space Transport’’ University Research, Engineering and Technology Institute. C.Y. Hui benefited greatly
from a private note on moisture diffusion written by Professor E.J. Kramer at the University of California,
Santa Barbara. For example, the idea of using Henry�s law is Professor Kramer�s. He also enjoyed the many
discussions with E.J. Kramer on this problem.
References

Bowman, C.L., Sutter, J.K., Thesken, J.C., Rice, B.P., 2001. Characterization of graphite fiber/polyimide composites for RLV
applications. In: 46th International SAMPE Symposium and Exhibition, vol. 46(2), pp. 1515–1529.

Deiasi, R., Whiteside, J.B., 1978. Effect of moisture on epoxy resins and composites. In: Vinson, J.R. (Ed.), Advanced Composite
Materials-Environmental Effects, ASTM STP 658, pp. 2–20.

Gannamani, R., Pecht, M., 1996. An experimental study of popcorning in plastic encapsulated microcircuits. IEEE Transactions on
Components, Packaging and Manufacturing Technology 19 (2), 194–201.

Gaskell, D.R., 1981. Introduction to Metallurgical Thermodynamics, 2nd ed. Hemisphere Publishing Corporation, New York.
Gurumurthy, C.K., Kramer, E.J., Hui, C.Y., 2002. Predicting Crack growth along polymer interfaces due to water attack and thermal

fatigue. In: Aliabadi, M.H. (Ed.), Thermomechanical Fatigue and Fracture. WIT Press, Southampton, UK.
Loos, A.C., Springer, G.S., 1981. Moisture absorption of graphite/epoxy composites immersed in liquids and in humid air. In:

Springer, G.S. (Ed.), Environmental Effects on Composite Materials. Technomic, vol. 1, pp. 34–50.
McCluskey, P., Munamarty, R., Pecht, M., 1997. Popcorning in PBGA packages during IR reflow soldering. Microelectronics

International 42, 20–23.
Price, W.A., Rice, B.P., Crasto, A.S., Thorp, K.A., 1995. Hygrothermal aging of imide composites. In: Proceedings of the High Temple

Workshop XV, pp. S1–S24.
Rice, B.P., 1996. Hygrothermal studies on fluorinated polyimides––a physical characterization. In: 28th International SAMPE

Technical Conference, pp. 778–789.
Rice, B.P., Lee, C.W., 1997. Study of blister initiation and growth in a high-temperature polyimide. In: 29th International SAMPE

Technical Conference, pp. 675–685.
Shewmon, P.G., 1989. Diffusion in solids. Minerals, Metals and Materials Society, Warrendale.
Shirrel, C.D., 1978. Diffusion of water vapor in graphite/epoxy composites. In: Vinson, J.R. (Ed.), Advanced Composite Materials––

Environmental Effects. ASTM STP 658, pp. 21–42.
Sullivan, R.M., 1996. The effect of water on thermal stresses in polymer composites. ASME Journal of Applied Mechanics 63, 173–179.
Sullivan, R.M., Stokes, E.H., 1997. A model for the effusion of water in carbon phenolic composites. Mechanics of Materials 26, 197–

207.
Weitsman, Y., 1987. Stress assisted diffusion in elastic and viscoelastic materials. Journal of the Mechanics and Physics of Solids 35 (1),

73–93.
Whitney, J.M., Browning, C.E., 1978. Some anomalies associated with moisture diffusion in epoxy matrix composite materials. In:

Vinson, J.R. (Ed.), Advanced Composite Materials––Environmental Effects. ASTM STP 658, pp. 43–60.
Woo, M., Piggott, M.R., 1987. Water absorption of resins and composites: I. Epoxy homopolymers and copolymers. Journal of

Composites Technology and Research 9 (3), 101–107.


	Steam pressure induced in crack-like cavities in moisture saturated polymer matrix composites during rapid heating
	Introduction
	Problem statement
	Boundary conditions
	Method of solution
	Infinitely thick plate with infinitely fast heating
	Depletion layer
	Finite plate thickness, infinitely fast heating
	Long time and short time behavior
	Exact solution

	Summary and discussion
	Acknowledgment
	References


