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Abstract

The time history of steam pressure inside an isolated “crack-like” micro-cavity in a polymer matrix composite is
studied by assuming that the chemical potential of water is continuous across the cavity/polymer interface. Steam pres-
sure inside the cavity is due to rapid heating of moisture-saturated composites from its initial temperature to a final
temperature 7;. Exact closed form solutions are obtained for a “crack-like” cavity inside an infinite and a finite plate.
For the case of an infinite plate, the exact solution shows that the steam pressure approaches the saturated steam pres-

sure ps.( Ty) at a characteristic time 7, =~ % (%‘%“))2, where /4 is the cavity height, D is the diffusivity of water at T¥,

M., is the molecular weight of water, , is the initial moisture concentration of the composite and R is the universal gas
constant. When moisture is allowed to escape from the composite, such as in the case of a finite plate, the maximum

. . . LRT, . . .
steam pressure depends on a single dimensionless parameter o = WN@WJ where L is the thickness of the composite
WHsat

plate. For large o, the maximum steam pressure approaches pg.(77). However, the maximum steam pressure can be
significantly less than pg,(77) when o < 4. The present model can also be used to study the ‘popcorning’ observed in
electronic packages.

© 2004 Elsevier Ltd. All rights reserved.

1. Introduction

Due to their high specific stiffness and strength properties at temperatures in excess of 300 °C, graphite
fiber/polyimide matrix composites represent an important class of materials for secondary support struc-
tures in reusable launch vehicles. When not in service, these composites can absorb moisture in excess of
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Nomenclature

V] moisture concentration

Vo, Yo Initial and equilibrium moisture concentration respectively
To, Ty initial and final temperature respectively

D(T), Dy moisture diffusivity at temperatures 7 and 7 respectively

Xz relative humidity

Ups Hair chemical potential of water in polymer and air respectively

T heating rate

ng, n  initial and final number of moles of water per unit projected area in the cavity
p partial pressure of water vapor in the cavity

Psat(T) saturated vapor pressure of pure water at temperature 7'
L, h  plate thickness and cavity depth respectively

k Henry’s constant

0] normalized concentration

X, X  normalized position

it normalized times

Ly thickness of depletion layer

M, molecular weight of water, 18 g/mol

R gas constant, 8.314 J/(molK) or

d dimensionless parameter, d = ﬁf’(‘}o)

c dimensionless parameter in the finite plate problem, ¢ = 1—/../ ¢
o dimensionless parameter in the finite plate problem, o = #ﬂ“m

3% by weight from the environment. During service, they can be subjected to heating rates as high as 100
°C/s. At such heating rates, failure or extensive internal damage of the composite can occur due to steam
induced delamination and blistering. This phenomenon has led to many studies on blister initiation and
growth in high temperature resins and composites (see Bowman et al., 2001; Price et al., 1995; Rice,
1996; Rice and Lee, 1997; Shirrel, 1978). For example, Rice and Lee (1997) have conducted weight loss
experiments by subjecting polyimide plates to various heating rates. From these experiments, they deter-
mine the dependence of the moisture diffusivity of water on temperature. They also studied the onset of
blisters by measuring the change of thickness of the composite plate during heating. By observing that
the volume of their samples actually increases when heated at a constant external pressure of 10 MPa, they
concluded that the pressure inside the steam filled cavities must exceed 10 MPa. A detailed study of the
internal steam pressure caused by the effusion of water in carbon phenolic composites was carried out
by Sullivan and Stokes (1997) using a theory of gas flow in a rigid porous media.

The issue of moisture absorption and subsequent delamination is also important to the electronic pack-
aging community. When polymer-encapsulated microcircuits are exposed to high temperatures during
infra-red reflow soldering, a sound characteristic of popcorn popping is detected. This so-called ‘popcorn-
ing’ effect is due to the moisture induced delamination at the package interfaces. For more details, the read-
ers are referred to the articles by McCluskey et al. (1997), Gannamani and Pecht (1996) and the references
therein.

Blister formation and interlaminar crack growth are controlled by moisture transport from the polymer
to microcavities in the composite. A simple problem is to consider the time history of steam pressure inside
an isolated cavity in a moisture-saturated composite. During heating, water molecules are transported from
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the polymer into the cavity, resulting in an increase of steam pressure. On the other hand, since moisture
can also escape from the surfaces of the composite; the pressure inside the cavity can be reduced if the com-
posite is sufficiently thin. The following questions naturally arise: How fast does the pressure build up inside
a cavity? In addition, how does steam pressure depend on the cavity size, the moisture diffusivity, the heat-
ing rate and the moisture content in the composite before heating? A micromechanical model addressing
these questions will allow us to quantify the time dependent driving force causing damage and can be used
to study the interactions between cavities and other forms of damages, such as interfacial cracks. Such a
model can eventually lead to a micromechanical based continuum model for damage evolution in a
composite.

There is a vast literature on the diffusion of moisture in polymers and polymer composites. The focus of
these studies is to predict the moisture concentration as a function of position and time in a homogenized
composite and in neat resins. Much less attention is given to micromechanical modeling of blister forma-
tion. For polymers and polymer composites, readers are referred to a collection of articles edited by
Springer (1981). In general, the diffusivity of moisture is stress, concentration and temperature dependent
(for example, see Weitsman, 1987). Despite the many theoretical and experimental developments, there is
still no consensus on the relative importance of these effects. In addition, experiments seem to suggest that
moisture transport is very sensitive to the amount of internal damage (Shirrel, 1978). Such damage can oc-
cur during fabrication or when the composite is exposed to moist air with high relative humidity and high
ambient temperatures (Loos and Springer, 1981; Shirrel, 1978; Whitney and Browning, 1978). Damage oc-
curs even at zero heating rates with no applied mechanical load. Current theories on moisture transport do
not take into account the development of internal damage. Despite these complications, weight gain exper-
iments on composite plates exposed to moist air with a fixed relative humidity have shown that moisture
diffusion data can be fitted using a concentration dependent form of Fick’s law (Shirrel, 1978; Whitney
and Browning, 1978). In particular, when composite damage is low, the diffusivity is found to be concen-
tration independent (Whitney and Browning, 1978). A further simplification is to note that the thermal dif-
fusivity of typical composites is much larger than the moisture diffusivity, so that thermal equilibrium is
attained much faster than moisture equilibrium. Thus, the thermal conduction problem and the moisture
diffusion problem can be decoupled.

Although Fick’s law has been used quite successfully to interpret weight gain experiments, there are some
shortcomings. Fick’s law states that the moisture flux is proportional to the concentration gradient, whereas
in reality, it is the gradient of the chemical potential of moisture that drives diffusion. A formulation of
transport driven entirely by concentration gradient has limitations; even in one-dimensional weight gain
calculations. For example, consider a long plate of thickness L with an initial moisture concentration of
Yo. The moisture concentration is defined as the mass of water per unit volume of composite. The top
and bottom surfaces of the plate are located at x = 0 and x = L respectively. The plate is exposed to moist
air at a constant temperature 7" with a fixed relative humidity y. The moisture concentration inside the
plate, y, satisfies the diffusion equation

oy Y

L _p-7 1

ot Ox? M)
where x is the coordinate normal to the plate and D is the diffusivity of water. The difficulty lies in deter-

mining the boundary conditions on x =0 and x = L. The boundary condition often used in the literature
(Shirrel, 1978; Whitney and Browning, 1978) is:

Yx=0,t>0)=y(x=L,t>0)=y_ (2)

where /., is the equilibrium concentration. From the experimental point of view, this boundary condition
presents no difficulty, since ., can be determined from the weight gained at long times. However,
this boundary condition is inadequate from a modeling standpoint as it should be related to the relative
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humidity since exposing the polymer plate to moist air drives moisture transport. Indeed, experiments have
shown that ., is related to the relative humidity y by (Shirrel, 1978; Whitney and Browning, 1978):

Voo = ATy (3a)

but some authors (Deiasi and Whiteside, 1978; Woo and Piggott, 1987) have observed a relationship of the
form

Voo =AD" (3b)

where the exponent b is different from one. It is not clear whether the difference in exponent b is because of
an experimental error as pointed by Loos and Springer (1981) or is actually present in some material sys-
tems. In addition, the dependence of A(7) on temperature is found to be very weak (Loos and Springer,
1981). This paradox can be resolved by using the approach of Sullivan and Stokes (1997) by assuming that
the water molecules on the surface of the polymer composite are in local chemical equilibrium with the sur-
rounding moist air, i.e.

tup(x = Ov t) = Hair (4)

where py,, .5 denote the chemical potential of the water in the polymer and water in the surrounding air
respectively. The chemical potential of the water in the polymer composite is a function of the time and
position, whereas the chemical potential of water in the air is spatially uniform and depends only on the
relatively humidity y and the temperature, i.e.,

tair = Ho(T) + RT In (5)

where (7)) is the chemical potential of pure water at temperature 7. As in Sullivan (1996), the water and
the polymer composite are treated as a binary mixture. The chemical potential of the water in the polymer
composite can be expressed in terms of the activity of the water, a:

ty = to(T) + RT Ina(x = 0,1 > 0) (6)
At sufficiently small concentrations, Henry’s law is valid, that is:

a(x=0,t>0)=k(T)Y(x=0,¢t>0) (7)
Therefore, local equilibrium implies that

Y(x=0,t>0) = y/k(T)

This equation is the same as (3a) provided that A(7T) is identified with 1/k(T). This shows that the boundary
condition (2) used in the literature is consistent with the chemical potential approach.

2. Problem statement

The geometry is shown schematically in Fig. 1. For simplicity, we consider a “crack-like” rectangular
cavity in the mid-plane of a plate of thickness 2L + 2h. Specifically, the lateral dimension of the cavity is
assumed to be much greater than its thickness 2/ so that moisture transport through the lateral walls of
the cavity can be neglected. This assumption and symmetry allows us to study the one dimensional diffusion
problem illustrated in Fig. 2.

Initially, the composite is in thermal equilibrium at temperature 7j. Let 1/ denote the initial moisture
concentration in the composite. Without loss in generality, we assume that the composite is initially fully
saturated, that is, the relative humidity inside the cavity is 100%. The composite is subjected to the follow-
ing thermal history:
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2L+2h

Fig. 1. A crack-like cavity in the mid-plane of a plate of thickness 2L.

f Wall impenetrable to moisture

Fig. 2. Top half of the cavity and plate due to symmetry considerations.

To+Tt 0<t<t
T()—{ (8)
T t =t
where
T:M (8a)
te

is the heating rate and ¢; is the time taken to reach the temperature 7. For simplicity, we assume that the
composite is rigid so that the cavity is un-deformable. This assumption will overestimate the rate of pres-
sure increase in the cavity. The validity of this assumption will be addressed in the discussion. To complete
the problem formulation, the polymer and the water is treated as a binary solution. Since diffusion is driven
by the gradient of chemical potential p of the water instead of concentration gradient, the moisture flux,
denoted by J, is given by (Shewmon, 1989):

J=—-MyVpu )
where M is the mobility of water molecules. Conservation of mass implies that
V.J=—0y/ot (10)

The governing equation for moisture diffusion is obtained by combining (9) and (10), i.e.,
V- (MyVu) = oy /ot (11)



1060 C.-Y. Hui et al. | International Journal of Solids and Structures 42 (2005) 1055-1072
3. Boundary conditions

To gain physical insight, consider the special case where the thickness of the composite plate is very large
in comparison with the cavity height. In this case the moisture concentration far away from the cavity is
given by

Y(x — o0o,t) =, (12)
The difficult boundary condition is associated with the cavity surface at x = 0. Local equilibrium implies
that the chemical potential of water is continuous across the interface x = 0. Let u, and p. denote the chem-

ical potential of water in the polymer and cavity respectively. The assumption of local equilibrium implies
that:

py(x = 0") = g (13)
The chemical potential of water in the cavity is given by (5),
p
U = Uo(T) + RT In 14
o)+ R ) 1

where p is the partial pressure of water vapor in the cavity and pg,(7) is the saturated vapor pressure of
pure water at temperature 7. Assuming Henry’s law, local equilibrium and (5)—(7) implies that

p
KTy(x=0,1) = 15
(T)( ) o (T) (15)
The steam pressure inside the cavity is related to the cavity height / by the ideal gas law,
nRT
== (16)

where 7 is the number of moles of water per unit projected area of the cavity. It is related to the moisture
flux through the polymer surface, J, by

1 t
n:no—M—/J(x:OJ/)dt/ (17)
w JO

where M, is the molecular weight of water and n is the initial number of moles of water per unit projected
area inside the cavity and is given by
sat(TO)h
_ 18

"= RT, (18)
The second term in (17) is the total number of moles of water inside the cavity due to diffusive transport
across the interface x =0. Since initially the composite is fully saturated, k(7o)y(x =0,=0)=1 or
k(Ty) = 1/io. Combining (15)—(18), the boundary condition on the interface x = 0 is:

_ _ T psat(TO) R ! / o / /
e =0.0) = (Pl e o= 0.0y ) (19)
Henry’s law and (9) implies that
J = —MRT 0y /ax = —Day /ox (20)

where D = MRT is the diffusivity. Thus, the Henry’s law assumption leads to the linear diffusion equation,

D(T) 0™ /ox*> =y /ot (21)
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It is to be noted that D is a function of temperature. Since temperature is a function of time, D is also time
dependent. The next step is to specify the behavior of k(T), ps.«(T) and D(T).

Weight gain experiments have shown that k(7)) is quite insensitive to temperature (Deiasi and Whiteside,
1978; Loos and Springer, 1981; Shirrel, 1978). Consistent with these observations, we assume

k(T) = k(To) = 1/vq. (22)

The saturated vapor pressure of water can be obtained from steam tables. py,(7) is well approximated by
the equation:

psat(T) =P exXp <_TT> (23)

where Py = 36839.35 MPa, T = 4802.4 K. Eq. (23) can be rewritten as

Pl(T") = exp <7(1 —Tl>) (24)

where pt (T7) = pei(T)/psi(To) and T =T/T,. Fig. 3 plots i (T) versus T° =T/Ty. Experiments have
also shown that the dependence of diffusivity on temperature obey an Arrhenius equation of the form (Rice
and Lee, 1997; Whitney and Browning, 1978; Woo and Piggott, 1987) which can be written as

)

where 77 is a material constant. For example, for the material AFR700B, which is a high-temperature
fluorinated polyimide, Rice and Lee (1997) reported a 7" =~ 13.7.

4000 T T T T T T T T T 1

o(T)

sat \

2000 \

psat(TO)l 1

L
11 12 13 14 . 15 16 17 18 1.9 2

T

Fig. 3. Plot of pZ, (T) and w(T™) versus normalized temperature 7". Arrows point to the appropriate axis labels.



1062 C.-Y. Hui et al. | International Journal of Solids and Structures 42 (2005) 1055-1072
4. Method of solution

Introducing the dimensionless variables

¢ =Y/, (26a)

X=x/h (26b)
and normalized time,

t
= iz D(T(¢))d¢, (26¢)
h™Jo

(21) can be reduced to the standard form

0¢ /0t = ¢p/ox* >0 (27)
The boundary conditions become:

i
P(x=0,1>0) = (T [1 + d/ qb,x|x0d?’} (28)
0

and

P(x — 00, 1>0)=1 (29)
where

g = RTovo (30)

wasat(TO)
T*
o(T") = —— 31
() p;at(Tl) 3D

Using Tp=300 K, y,=42 kg/m°>, and (23), we get d ~ 1400. The function w(7") is in general time dependent.
The initial condition is

PpET=0)=1 (32)

5. Infinitely thick plate with infinitely fast heating

To simplify the problem further, we consider the limiting case of very high heating rates, i.e. T — oo.
This is an important case since it provides an upper limit on how fast the pressure can build up. Since
the heating rate is infinite, we have

To t=0
T{Tf t=0" 39

Note that in this case 7 = Dyz/h”. In addition, the governing Eq. (27) and the boundary and initial condi-
tions (28), (29), (32) remain unchanged provided that the time dependent dimensionless function (31) in (28)
is replaced by the constant

_ Ty
Pea(TT)
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which is typically much smaller than one. For example, w¢= 6.7 x 10~* for Ty = 300 K and T; = 600 K. All
the examples in this paper (e.g. Figs. 3-8) are based on Ty = 300 K and 77=600 K. A plot of o(T™) versus
normalized absolute temperature is shown in Fig. 3.

For the case of infinitely fast heating, we normalize the equations using a new set of dimensionless var-
iables X and 7 i.e.,

— Exact solution
=06 = + Long time solution 1
= B +++_Short time solution
o' os -
o

O 1 1 1 1
(@ "o 5 10 15 20 25

sqrt(t)

12 T T T T T I

p(MPa)

0 1 1 1 1 1 1 1
0 0.5 1 15 2 25 3 35 4

(b) time(sec)

Fig. 4. (a) Plot of normalized pressure with the square root of normalized time. (b) Plot of pressure in cavity versus real time.
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o(X7)

01 I I I I I I I I
10 12 14 16 18

8
sqrt(t)

Fig. 5. Plot of normalized concentration with the square root of normalized time for different normalized distances from the cavity
surface.

700

Fig. 6. Plot of normalized moisture concentration on the cavity surface with the normalized time 7 for different o.

d(l)f o dza)%Df ‘

X = — X, T = 7 (35)
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0.4 E

0.3 ! ! ! ! ! ! ! ! !

Fig. 7. Plot of maximum normalized moisture concentration on the cavity surface with the parameter o.

1400 T T T T T T T

1200 |

1000 |

800

AT

600

400

200

20 30 40 50 60 70 80 90 100

Fig. 8. Dependence of the duration of high pressure, At with o.

Also, it is convenient to introduce the function g = 1—¢. Eq. (27) remains unchanged with this transforma-
tion, 1.e.

0g/ot = 0°g/oX> (36)
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whereas the boundary conditions become:

1-gX=0,t>0)=0wr— Oraa—i(X:O,r/)dt’ (37a)
and

gX = 00,7>0)=0 (37b)
The new initial condition is

gX,t=0)=0 (37¢)
Taking the Laplace transform of (36), we obtain

g(X,s) = A(s)e V¥ (38)
where

2(X.s) = /0 T eg(x, 1) dr (39)

denotes the Laplace transform of g. The function A(s) is determined by the Laplace transform of (37a).
A simple calculation shows that
1 - Wy
Als) = ——+——. 40
W= AT “
The function 1 — g(X = 0,7) = ¢(X = 0,7) is important, since it is the time history of the normalized pressure
inside the cavity. Indeed, from (15),

1_g(X:07T):p(X:()vT)/psal(Tf) (41)
Since A(s) = g(X = 0,s), the steam pressure inside the cavity is given by:
PX = 0,7) = py (Tr)[1 — £7'(4(s))] (42)

where ¢~! denote the inverse Laplace transform operator. Since
7NA(s)) = (1 — wy)eterfe/T,
the time history of the steam pressure in the cavity is

pX =0,17) = pu (To)[1 — (1 — ex)e erfe /7] (43)

The short and long time behavior of the steam pressure can be obtained using the asymptotic behavior of
the complementary error function, it is found to be:

dwe/mDet

1 44
p < (44)

P = 0.0) = pu(To)(T3/Ta) 1+ 201 = ) VD

> 1 (45)

p(Xzo,r>=pm<Tf>[1—<1—wf> ! } deon v Dyt

dwg+/nDyt h

where these asymptotic results are expressed in physical time. Eq. (44) shows that the pressure jumps from
Pead To) from 1 =0 to peu( To)(Te/Ty) at t =0 " . This sudden jump is due to the infinite heating rate, which
cause the temperature to jump from 7 to Tt. Since steam is modeled as an ideal gas and the cavity is rigid,
the pressure increases instantaneously by the factor Ty/ T, (Boyle’s Law). However, this increase in pressure
is insignificant in comparison with the saturated steam pressure at 77 For example, if a moisture-saturated
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composite, initially at room temperature 7, = 300 K is rapidly heated to its glass transition temperature,
which is about 625 K for high temperature polyimide, (44) implies that the sudden jump in vapor pressure
inside a cavity is about a factor two above the saturated vapor pressure at room temperature, pg,( 7). This
increase is insignificant in comparison with the final saturated steam pressure at 7y = 625 K, which is about
4000 times pgai( 7).

Fig. 4a plots the normalized steam pressure p(X = 0,7)/psai( T5) versus the square root of the normalized
time 7. The short time solution (44) and the long time solution (45) are also plotted on the same figure. The
maximum pressure pg,(7) is reached at a normalized time corresponding to /7 ~ 10. Fig. 4a shows that
the characteristic normalized time 7. for the transition from short time to long time behavior is /7 ~ 5; in
real times, this is

251 (Mypy (Tr)\
‘. < psat( f)) (46)
Dy RTt,

For /=10 pm and Dy = 6.82 x 1072 m?/s (using (25) and Rice and Lee, 1997), the transition time z is about
0.4 s. Fig. 4b plots the actual pressure versus real time.

1%

6. Depletion layer

Although the composite is infinitely thick in comparison with the depth of the cavity, the moisture inside
the cavity is supplied from a thin layer of polymer adjacent to it. The thickness of this layer evolves with
time. For short times, this layer increases with time as water is depleted. As the moisture is replenished by
diffusion, the thickness of this layer goes down and finally vanishes when the cavity is fully pressurized.
Mathematically, if we consider a fixed point X > 0 in the composite, the normalized moisture concentration
¢(X,7) at that location would decrease from its initial value of one as moisture is transported to the cavity.
The moisture concentration will eventually increase and will reach its initial value of one when the cavity is
fully pressurized. Thus, for any fixed X > 0, ¢(X,7) has a minimum ¢,;,(X) at some time 7,;,(X). The thick-
ness of the depletion layer, Ly, is defined by the condition

¢min(Xd) =09 (47)

where Xq = Lg/h. To evaluate Ly, we need to determine the moisture concentration as a function of position
and time. The concentration can be obtained by inverting the inverse Laplace transform of g(X,s). Using
(38) and (40), it is

X
X,1)=1-(1- Yt erf — 43
H(X, 1) (1 — wy)e eerc(ﬁ+2ﬁ> (48)
It can be seen that (43) is recovered as X — 0. The moisture concentration at different normalized distances
from the cavity surface is plotted against the square root of the normalized time 7 in Fig. 5. Fig. 5 shows
that
Ly

Qin(Xa=4) ~0.9 = 5 = 4 (49)
Therefore, the depletion layer is about four times the cavity depth.

Since the plate is infinitely thick, steam can only enter the cavity and cannot escape. Thus, the maximum
pressure is always ps.( T7). The situation is different if the plate has a finite thickness. Indeed, for a suffi-
ciently thin plate, the maximum steam pressure can be much less than pg,(7}). Since the thickness of the
depletion layer is about 44, for plates of thickness much larger than 44, the steam pressure can be significant
and can reach the saturated pressure.
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7. Finite plate thickness, infinitely fast heating

To demonstrate the validity of this argument and to study the dependence of the maximum steam pres-
sure in the cavity as a function of plate thickness, we solve the finite plate problem. The governing equa-
tions are still given by (36, 37a, 37¢). However, the boundary condition (37b) is replaced by

gX=01>0)=1-yY_ /Yy,=1—-¢, ,=c (50)

where a = dwfL/h. This new boundary condition states that the external surface of the plate is in contact
with dry air; where 1/, is the long time moisture concentration of the plate and is assumed to be much smal-
ler than ¢ so that ¢ ~ 1. Taking the Laplace transform of (36) and using (37c), we obtain

g(X,s) = A(s)eV™ + B(s)e™*V* (51)
The functions A(s), B(s) are determined by the Laplace transform of (37a) and (50). They are found to be
(2o — (1+%)
1 —on/5 o/s 1
(1 —W)e i—e \/—<1 —&—75)
(1=f) - (e

-2 e 08

The normalized cavity pressure p/ps.(T7) is 1 — g(X = 0,7). Using (51)—(53), the Laplace transform of
g(X =0,7) is found to be:

A=

(52)

B= (53)

1=or) sinh(oy/s) + ¢
g(X:O,s):A—l—B:(ﬁ)Sl;(S() o (54)
where
E(s) = /s sinh(a/s) + cosh(ay/s) (55)

7.1. Long time and short time behavior
The steady state value of g(X = 0,7) is determined by the behavior of its transform as s — 0, which is
g =0,5—0)== (56)
Eq. (56) implies that
X =01 0)=1-cx1 (57)

Thus, for the case of ¢ = 1 (the plate is exposed to dry air of zero relative humidity), the cavity pressure goes
to zero at long time. The short time behavior of the normalized pressure is determined by the behavior of
g(X =0,s) for large s. A simple calculation shows that

()

Vs+1

#(X,s — o) = (58)
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Comparison of (40) and (58) shows that the short time pressure in the finite plate problem is exactly given
by the cavity pressure of an infinitely thick plate. This is to be expected, since the moisture transported to
the cavity at short times is from material that is close to the cavity surface.

7.2. Exact solution
The exact solution of g(X = 0,7) can be obtained using the inversion formula
- 27'51 —ico

y+ioco
gX =0,7) = 1 / g(X =0,s)e"ds (59)

where the integral in (59) is evaluated along any line Res = y to the right of all singularities of g(X = 0, s).
The complex path integral (59) can be evaluated using residue theorem, the solution is:

gX =0,1) =c+ Y Res[e"g(X =0,9)]], (60)

where Res[e"g(X = 0,s)]|, denotes the residue of e"g(X = 0,s) at s; and s, are the singular points of
g(X =0,s). The singularities of g(X,s) are located at s =0 which is a simple pole, and at the zeroes of
E(s). The zeroes of E(s) are the roots of

Vs tanh(ay/s) = —1 (61)
Let z = a,/s, using the identity tanhz = —itan(iz), (61) can be rewritten as

iztan(iz) = a (62)
where

LRT

aEdef/h:hMM:?OTf) (63)
The factor dw;=0.94 and hence a ~ L/h. Let u = iz, then (63) becomes

utanu = o (64)

It can be readily shown that for real «, (64) has infinitely many simple real zeroes. In addition, if u is a zero,
so is —uy. Denote these zeroes by +u,, where k is a non-negative integer. Since the zeroes of (61) are related
to the zeroes of (64) by s, = —u}/o?, the singularities of g(X,s) are all simple poles. The residues of
e"g(X = 0,s) are found to be:

3

(1 _ (Uf) sin(ug) ¢

Uy u

=1

Res[e"g(X = 0,s)][, = 2e7%7/* (65)

(1 4 o) 20 4 cos(uy)

U

For sufficiently large u, the roots of (64) occur close to kr, where k is an integer. Using (60) and (65), the
normalized concentration is given by

) sin(ug)  ca
uy u?

A ; 66
(1+ o) 208 4 cos () (66)

(l—a)f

P =0,1)=1—c— Y 2e7/”
k

Eq. (66) implies that the maximum normalized pressure for a given ¢ depends only on the dimensionless
parameters « and wy. Since 1 — w;~ 1, the dependence on wy is extremely weak. Therefore, for a fixed ¢,
the maximum normalized pressure depends only on «. In particular, for ¢ = 1, the normalized pressure van-
ishes at long times. Fig. 6 plots the normalized moisture concentration on the cavity surface versus the nor-
malized time for ¢ = 1 and different values of parameter «. The infinite plate solution (43) is also plotted in
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Fig. 6 as a comparison. Since ¢(X = 0,7) is also the normalized steam pressure, the plots in Fig. 6 are also
the time histories of steam pressure. For each «, the normalized pressure p/ps.( T¢) builds up from its initial
value of wy to its maximum ¢, at T = Tmax. The dependence of the maximum normalized pressure ¢,,x on

o is shown in Fig. 7. Fig. 7 shows that the maximum pressure increases rapidly for small values of o (thin
plates); it then levels out for & > 25. Since “”(OTf) ~ 1, the results in Fig. 7 predict that the steam pressure
inside the cavity will be close to the saturated vapor pressure if the plate to cavity thickness ratio exceeds 25.
This is about six times thicker than the depletion layer in the infinite plate problem. It should be noted that
the plate corresponding to o = 25 is quite thin, it is about 25 times the cavity depth.

Let the normalized time where the normalized pressure first reaches 0.9 by t* (see Fig. 6). Beyond this
time, the pressure reaches a maximum then decreases to 0.9 at t = t™*. The difference between these two
times, At =t — t* determines how long the pressure in the cavity exceeds 0.9 P, (Ty). Fig. 6 shows that
7" in extremely insensitive to a, as long as o > 10. A detailed analysis showed that t* decreases very slightly
with increasing o. In addition, for o > 25, the infinite plate solution is a good approximation to the finite
plate solution for normalized pressure below 0.9. On the other hand, ™ and hence At increases rapidly with
o. This dependence is shown in Fig. 8.

8. Summary and discussion

The steam pressure inside a microcavity when a moisture saturated polymer composite is rapidly heated
is determined using by assuming the chemical potential of water is continuous across the cavity/polymer
interface. In this work we consider a single isolated “‘crack-like” cavity in a composite plate. However,
the formulation in this work can be used to compute the moisture content in a composite containing a large
number of cavities of different size and shape. The key result in this paper is that maximum steam pressure
Pmax 18 a function of a single dimensionless constant o,

Prmax ZPSdt(Tf)¢max(a) (67)

LRwa(J
hM P

geometry of the compos1te and the thermodynamic properties of pure water, and is otherwise independent
of the properties of the composite (e.g. diffusivity). However, the time needed to reach maximum steam
pressure depends on both the diffusivity and .

Although all the examples in this work are based on the temperature range from 300 and 600 K, which
corresponds to wp= 6.7 x 107, the analysis is valid for all temperature ranges.

Our results allow us to establish a condition for blister-induced delamination. Consider a circular
cylindrical cavity of radius a. The height of the cavity /4 is assumed to be much smaller than its radius,
i.e., h/a < 1 so that it can be treated as a penny-shape crack. Assuming that a is much smaller than the
typical plate dimension, then the maximum strain energy release rate G due to a uniform pressure loading
on the crack faces is:

where o = It is interesting to note that, with the exception of ), a is completely determined by the

o 1=V Py (3))a )

T E

where E and v is the Young’s modulus and Poisson’s ratio of the composite plate which is assumed to be
isotropic. Fracture of the blister will occur if

41 =) [ppu(@)]’a
T E =G (69)

where G, is the fracture toughness of the composite in Mode 1. Thus, to prevent blister induced delamina-
tion, the maximum steam pressure
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pmax(a) < \% EGC/a7 (70)

where we have ignored the factor 4(1 — v?)/z. As an example, the maximum steam pressure inside a cavity
in a thick composite that is rapidly heated from room temperature to 600 K is about 12 MPa. The critical
flaw size computed using (70) with E = 2.5 GPa and G.=40 J/m? is about 700 pm. This is a large flaw in
comparison with typical defect size in a composite. However, it must be noted that when composites are
subjected to hydrothermal fatigue conditions, small flaws can grow sub-critically; that is, crack growth
occurs at energy release rates much lower than G. (Gurumurthy et al., 2002). In addition, the rate of crack
growth under these conditions will be sensitive to the duration of high pressure. As shown in Fig. 8, this
duration is sensitive to o. Specifically, even if the steam pressure inside thin plates (e.g. L/h ~ 25) can reach
the maximum steam pressure, the duration of this pressure is very short; thus sub-critical crack growth is
much faster in thick plates. To develop a theory for the safe operation of high temperature composites un-
der these conditions, it is necessary to relate the mechanism of sub-critical crack growth to the local stress
and deformation fields.

There are obvious limitations in this work. For example, the composite is heated infinitely fast. This
assumption provides an upper bound for the maximum steam pressure inside a cavity. The effect of finite
heating rate on the steam pressure will be the subject of an upcoming work.

Our model does not include the effect of stress on the chemical potential, which was considered by
Weitsman (1987). Also, the cavity is not deformable, which leads to a more conservative estimate for
the steam pressure. We do not expect the effect of stress to be very large, however, since the steam pressure
is significantly less than the elastic modulus of the composite. Thus, the change of the dimension of the
cavity will be small. Specifically, since the maximum pressure is a function only of o which is inversely pro-
portional to A, a change of /& of a few percent should not significantly affect our results. However, the
assumption that the activity of water in the polymer obeys Henry’s law merits further scrutiny since exper-
iments supporting this result are carried out in a limited temperature range. If Henry’s law is not satisfied,
the governing equations will be nonlinear and are much more difficult to solve.

Another limitation of our model is the use of the ideal gas law to compute the steam pressure (see (16)).
For most gases, including water vapor, the compressibility PV/nRT satisfy a relation of the form

PV /nRT = f(Pg, Tg) (71)

where f'is a universal function independent of gases, Pr = P/P. and Tr = T/T. are the reduced pressure
and temperature respectively; and we have denoted the critical pressure and temperature by P, and T,
respectively (Gaskell, 1981). For Pr = P/P.< 1, fis approximately linear in the reduced pressure, i.e.,

PV /nRT =1 — B(TRr)Pg (72)

Since the melting temperature of polyimide is close to the critical temperature of water, which is 647.3 K,
the condition 7, < T, is always satisfied. Eq. (72) implies that the ideal gas law underestimates the number
of moles of water needed to create a given pressure. For example, at 7= T}, (72) implies that the actual
number of moles of water needed to sustain the saturated vapor pressure Pg, (7}) is

[Psac(T1)V /RT]

"t = T BT/ o) (Pan (1)) (73)

which is greater than the ideal gas prediction, Py, (T)V/RTy, by a factor of

[1 - B(Tf/TC)(Psat(Tf)/PC)]_I

At T=623 K, this factor is about 2. As a result, the ideal gas assumption underestimates the time for the
steam pressure to reach its maximum value. Therefore, the result in this work provides a lower bound for
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the time taken for the steam pressure to reach its maximum and an upper bound for the maximum pressure.
The effect of non-ideal gas behavior on cavity pressure will be the subject of a future work.
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